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Abstract
The paper contains an application of the path-integration method to the
quantization of the electromagnetic field in a linear material medium modelled
as the Hopfield dielectric. Except for the frequency dispersion of the medium,
non-dipole effects are included leading to the wave vector dependence of
the dielectric function. Starting from a local microscopic Lagrangian, the
elimination of the matter degrees of freedom leads to the effective action
describing dynamics of the classical field in the medium, from which the
classical constitutive relation, non-local, both in time and space variables, could
be determined. Full quantization of the model is achieved by integration over all
fields with source terms included into the Lagrangian, and taking into account
the constraint and gauge fixing term, characteristic for a quantized gauge theory.
This gives the generating functional from which quantum propagators could be
constructed. Operators of effective quantum electromagnetic and polarization
fields were further retrieved from the propagators. The quantum constitutive
equation containing the absorption noise term was also determined. The
canonical equal time commutation rules are examined using both the BJL-
limiting procedure and using explicit expressions for the field operators—the
results in both cases are the same.

PACS numbers: 03.70.+k, 42.50.ct

1. Introduction

Path-integral quantization [1, 2] gives an alternative to the canonical quantization of classical
mechanical and field theoretical physical systems. While it leads to an excellent and elegant
interpretation of quantum mechanics based on the notion of classical trajectories, it also
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appeared to be a very fruitful tool of the quantization of relativistic field theories, and especially
the non-Abelian fields [3, 4]. In this paper the path integration will be used as a quantization
method of the electromagnetic field in homogeneous and linear dispersive dielectric media,
including not only the frequency dispersion, i.e. temporal non-locality of the constitutive
equations, but also wave vector dispersion leading to spatial non-locality in the configuration
space. The path-integral quantization of the electromagnetic field in a dispersive medium with
only frequency dispersion was described in a previous publication [5].

Quantization of the electromagnetic field in dielectric materials has attracted attention of
researchers for many years. First publications devoted to this subject [6–8] appeared soon after
the formulation of quantum electrodynamics in vacuum. Theoretical efforts to understand the
properties of the quantum electromagnetic field in polarizable matter, including dispersion
and absorption, gained a strong momentum with the emergence of quantum optics and its
various applications. One can distinguish two basic approaches that have been used for this
purpose. In the macroscopic approach the matter degrees of freedom are accounted for in
the form of material functions—electric permittivity (or dielectric function) in non-magnetic
materials, assumed as the given function of frequency fulfilling the Kramers–Kronig relations.
As examples of more recent publications in which various types of macroscopic approach
were used one can mention [9–14]. In the phenomenological approach to the quantization of
the electromagnetic field in an absorptive medium the losses are modelled by an additional
‘noise current’, which has to be introduced into the Maxwell equations for macroscopic fields.
In the microscopic quantization the noise current is a result of the coupling of the medium
polarization to reservoir degrees of freedom responsible for absorption [15].

The microscopic approach to quantization, where properties of matter on the atomic
and molecular level are used as the starting point, is of a more fundamental nature than
the macroscopic approach. At present the most frequently used microscopic model of the
dispersive medium is that formulated by Hopfield in 1958 for dispersive and non-absorptive
media [16], also known as the polariton model. The medium in the Hopfield model is
described by the continuous harmonic oscillator field representing polarization of the medium,
and the theory is quantized canonically. The canonical quantization scheme of Hopfield was
generalized to an absorptive medium by Huttner and Barnett [15] giving the damped polariton
model. The idea was to diagonalize the Hamiltonian of the system by constructing creation
and annihilation operators of effective quanta—the polaritons. The polariton creation and
annihilation operators were obtained from the original ‘bare’ operators by means of the
Bogoliubov-type transformation. The damped polariton model was used to describe transient
QED effects in dielectrics by Wubbs and Suttorp [17], where equations of motion were solved
with the use of the Laplace transform. The Laplace transform method was further used
by the same authors for the quantization of field in an inhomogeneous absorptive dielectric
[18]. Recently the Huttner–Barnett model was generalized to the case of uniaxial crystalline
dielectric media [19]. Another model, in which the medium is described by a set of harmonic
oscillators, was also recently proposed [20]. In this model the continuum of oscillators’
characteristic for the Hopfield model was replaced by a finite collection of harmonic oscillators.

Microscopic quantization of the electromagnetic field in dielectric media can also be
based on different assumptions. In the papers by Juzeliūnas [21, 22], the discrete nature
of matter on microscopic level was explicitly accounted for, with an arbitrary number of
energy levels for each molecule. In another attempt to quantize the electromagnetic field in a
dielectric medium, the matter degrees of freedom were modelled by a collection of two-level
atoms [23].

The Huttner–Barnett Lagrangian [15] is used in this paper as a basic assumption of the
model, with the only difference that terms containing spatial derivatives of the polarization
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field have been included. This corresponds to including non-dipolar effects in the response of
the medium to the electromagnetic field, and leads to spatial non-locality of the constitutive
equations, or the wave vector dispersion of the dielectric constant. Whereas the dipole
approximation, leading only to frequency dispersion, is equivalent to long wavelength
approximation, including the effects beyond dipole approximation allows us to also consider
waves with a shorter length. The suitable length scale in the present model will be given
later.

As a first step, the matter degrees of freedom will be eliminated by functional integration
over the oscillator fields representing the medium. As a result, one obtains the effective
action of the macroscopic classical electromagnetic field, describing motion of the field in
the material environment. The notion of the effective action in the present case is similar to
the effective action in vacuum QED [24], which also results by the elimination of the matter
degrees of freedom. In the case of vacuum QED they are described by electron–positron
fields, and in the case of the damped polariton model these are the oscillator fields used to
model the medium. While the notions of effective action in vacuum and dielectric QED are
basically very similar, the technical side of the derivation is entirely different in both cases.
The field equations of the present model are linear, so that the elimination of medium degrees
of freedom is straightforward due to the Gaussian nature of all functional integrations. In
vacuum QED, the elimination of the electron–positron field requires a more sophisticated
method [24].

Full quantization requires functional integration over all fields with the source terms
included into the microscopic action functional [25]. As a result of this procedure one
obtains the generating functional from which the propagators of the fields can be calculated
by functional differentiation with respect to the source functions [26]. The model is quantized
in a way appropriate for a gauge theory, with the constraint (Gauss law) and the gauge fixing
term accounted for. The propagators are basic objects in the path-integral quantization scheme
of a field theory. On the other hand, for most physical applications of QED in dielectric media
more convenient are the field operators constructed with the use of creation and annihilation
operators of effective quanta—the polaritons [16]. It is shown in this paper that the effective
field operators can be retrieved from the propagators. To make the derivation complete, the
equal time commutation rules (ECTR) have been examined with the use of the limiting BJL
procedure [27, 28]. It has been also shown that this leads to the same result as that expected
from the ‘naive’ ECTR, derived directly from the Lagrangian.

In section 2 the microscopic Lagrangian density L based on the Huttner–Barnett
expression [15] is given as the starting point for further consideration. It is also shown here
how the terms leading to wave vector dispersion can be included into the original expression
for L. The effective action of the classical electromagnetic field is further calculated by
the elimination of the matter degrees of freedom. Effective action is then used to find the
frequency and wave vector dependent dielectric function, and the constituent equation for
the classical D and E fields is derived. In section 3, which constitutes the main part of the
paper, full quantization of the model is performed. The quantization is performed taking into
account the subtleties connected with the constraint and the choice of gauge. The generating
functional is used to calculate the propagators of the electromagnetic and polarization fields. In
section 4 the ECTR are examined with the use of the BJL limit. As a next step, the operators
of the effective quantum fields are retrieved from the propagators and the constitutive equation
for these quantum fields is established. This is done in section 5. Section 6 contains final
remarks and some details of the calculations are given in appendix A. In appendix B, it is
shown that the ECTR discussed in section 4 can also be derived directly from the expressions
for the field operators calculated in section 5.
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2. Lagrangian density and effective action of the electromagnetic field in the medium

The Lagrangian density of a linear isotropic medium interacting with the electromagnetic field
is in the long wavelength limit assumed in the form [15]

L = ε0

2
E2 − 1

2µ0
B2 +

1

2ε0ω
2
0χr

(
Ṗ2 − ω2

0P2
)

+ P · E

+
∫ ∞

0
dω′

[�

2
Ẏ2

ω′ − �

2
ω′2Y2

ω′ − f (ω′)P · Ẏω′
]
. (2.1)

Here P is the polarization field, modelled by a harmonic oscillators with eigenfrequency ω0,
interacting with the electric field. χr denotes static polarizability of the medium and the term
quadratic in the polarization field has been written here in the form similar to that used in [16].
The harmonic oscillator fields Yω′ with continuous distribution of eigenfrequencies correspond
to the degrees of freedom responsible for absorption, and f (ω′) gives the frequency-dependent
coupling of these reservoir degrees of freedom to the polarization field. The parameter � is the
density of the reservoir oscillators per unit frequency interval. The polarization field, having a
physical sense of the dipole electric moment per unit volume, interacts with the electric field
via the d · E type of coupling.

The theory described by (2.1) leads after the elimination of the matter degrees of freedom
[5, 15] to the macroscopic constitutive equation of the form

D(t, r) = ε0E(t, r) + ε0

∫ t

−∞
χ(t − t ′)E(t ′, r), (2.2)

where χ(t) is the linear response function of the medium. This form of constitutive equation
is characteristic for the dipole approximation in which the spatial dependence of the response
function is disregarded. In a more exact treatment of the reaction of the dielectric medium to
the external electromagnetic field, next terms, corresponding to higher multipoles, should be
taken into account. This would then lead to the constitutive equation of the form

D(t, r) = ε0E(t, r) + ε0

∫ t

−∞
dt ′

∫
d3r′ χ(t − t ′, r − r′)E(t ′, r′), (2.3)

with time- and space-dependent response function. When higher multipoles are included into
the constitutive equations, leading to the spatially non-local relation between the D and E
fields, the polarization field can no longer be considered as a dipole polarization. It has to be
considered rather as a generalized polarization [29] with the interaction term of the same form
as in (2.1).

In the Huttner–Barnett model, with the Lagrangian density (2.1), the absence of spatial
non-locality, or wave vector dispersion, is a direct consequence of the fact that the Lagrangian
density contains no spatial derivatives of the matter fields, and in particular of the polarization
field P. The simplest generalization of (2.1) to the form containing spatial derivatives of the
generalized polarization field can be given for an isotropic medium as

L(E, B, P, Yω) = ε0

2
E2 − 1

2µ0
B2 +

1

2ε0ω
2
0χr

(
Ṗ2 − v2 ∂Pi

∂xj

∂Pi

∂xj

− ω2
0P2

)
+ P · E

+
∫ ∞

0
dω′

[�

2
Ẏ2

ω′ − �

2
ω′2Y2

ω′ − f (ω′)P · Ẏω′
]
, (2.4)

where summation over repeated vector indices is understood. The parameter v has a dimension
of velocity and its physical meaning will be clarified below. Due to the assumed isotropic
character of the medium the term containing spatial derivatives must be rotationally invariant.
For simplicity no spatial derivatives of the reservoir field Yω were included.
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The form of the term with spatial derivatives of the polarization field is not unique.
Another contribution consistent with the isotropic character of the medium could be of the
form −(

2ε0ω
2
0χr

)−1
v2

1∂iPj∂jPi . As will be seen below, (2.4) leads to the dielectric tensor
proportional to δij , whereas it can be shown that the ∂iPj∂jPi term would give an additional
term in the dielectric tensor proportional to kikj . In both cases, the transverse part of the tensor,
proportional to δij − k−2kikj , is the same and they differ by the form of the longitudinal part
∼kikj . In general, transverse modes of the electric field in dielectric media are of principal
interest [30]. For this reason, and also in order to keep the number of phenomenological
parameters as small as possible, no additional derivative terms will be included into the
Lagrangian density.

To give an estimation of the parameter v, note that wave vector dispersion can be
disregarded when the wave vector k is small, i.e. for wavelengths large in comparison with
the characteristic length scale of the model. A typical parameter with the dimension of length
in the present model is given by v/ω0. Therefore, a characteristic scale of wave vectors is
ω0/v, and long wavelength approximation, i.e. only frequency dispersion in the constitutive
equations, is justified for k � ω0/v. On the other hand, response of the medium to the
electromagnetic field can be described in the dipole approximation for wavelengths larger
than the interatomic or intermolecular distance, which in a solid is typically of the order
of 10−10 m. One may therefore expect the dipole approximation to fail for wavelengths,
λ = 2π/k, of this order of magnitude. The length scale in the present model is given by
v/ω0 and, although no intermolecular distance appears in the microscopic Lagrangian density
(2.4) explicitly, to obtain a physical criterion of applicability of the dipole approximation it is
reasonable to assume that both length scales are comparable, i.e. v/ω0 ∼ 10−10 m. Assuming
resonance frequency in the optical region, ω0 ∼ 1015 − 1016 Hz, one obtains v ∼ 105 −
106 m s−1, i.e. 10−3 − 10−2 of the velocity of light in vacuum.

The basic object in the path-integral formulation of an effective field theory is the ground
state persistence amplitude (vacuum-to-vacuum probability amplitude),

C[E, B] = exp
( i

h̄
Seff [E, B]

)
=

∫
[dP][dYω] exp

( i

h̄
S [E, B, P, Yω]

)
, (2.5)

where Seff is, by definition, the effective action [31], and
∫

[dP][dYω] denotes functional
integration over the matter fields. Functional integrations in (2.5) have to be performed over
the classical fields vanishing for time → ±∞. This boundary condition can be implemented
by multiplying the right-hand side by ground state wavefunctions in remote past and remote
future, and perform functional integration over all fields [32]. The appropriate expression
reads

C[E, B] =
∫

[dP][dYω] exp
( i

h̄
S [E, B, P, Yω]

)
	out∗

0 [P, Y]	 in
0 [P, Y]. (2.6)

The wavefunctions of a field system are represented by functionals of the fields. The expression
of the type (2.6) for the ground state persistence amplitude results with the −iε term in
the denominators of the propagator, giving a prescription for avoiding singularities of the
propagators [32].

The ground state persistence amplitude is a functional of the external electromagnetic
field and its modulus squared gives the probability that the medium remains in its ground state
in future if it was in this state in the past, despite of the interaction with the electromagnetic
field. S is the microscopic action functional

S[E, B, P, Yω] =
∫

dt

∫
d3x L(E, B, P, Yω). (2.7)
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The linear dielectric described by the microscopic Lagrangian density (2.1) without spatial
derivatives of the polarization field has been treated with the help of the path-integration method
in [5]. Functional integrations in (2.5) are Gaussian and can be done explicitly. The integration
over the reservoir fields Yω can be performed in exactly the same way as in [5], and leads to
the ground state persistence amplitude in the form

C[E, B] = exp
( i

h̄
Sem[E, B]

)∫
[dP] exp

[
i

2h̄

∫
dt

∫
d3x

1

ε0ω
2
0χr

(
Ṗ2 − v2∂iPj∂iPj − ω̃2

0P2
)

− i

h̄

∫
dt

∫
d3x E · P

]
exp

[
i

2h̄

1

�

∫
dt

∫
dt ′

∫
d3x P(t, x)G(t − t ′)P(t ′, x)

]
,

(2.8)

where Sem is the action of the free electromagnetic field and ω̃0 is the shifted resonance
frequency [15],

ω̃2
0 = ω2

0 +
∫ ∞

0
dω′ w(ω′)2

�2
, (2.9)

with

w(ω) = (
ε0ω

2
0χr�

)1/2
f (ω). (2.10)

The integral kernel G(t) is given as

G(t) =
∫ ∞

0
dω′ ω′2f (ω′)2DF (t, ω′), (2.11)

where the propagator of the reservoir oscillators has the Fourier representation

DF (t, ω′) =
∫ ∞

−∞

dω

2π

exp(−iωt)

ω′2 − ω2 − iε
, (2.12)

with the −iε term in the denominator. The next step in the elimination of the matter degrees
of freedom is the functional integration over the polarization field, which is also Gaussian and
leads to the final form of the ground state persistence amplitude

C[E, B] = exp

[
i

h̄
Sem[E, B] +

i

2h̄

∫
x

∫
x ′

E(x)�(x − x ′)E(x ′)
]

, (2.13)

where a compact notation has been used in which x denotes the set of variables t and x, and∫
x

f (x) =
∫

dt

∫
d3x f (t, x).

The integral kernel �(x) is an inverse of the operator in the part of the exponent in (2.8)
quadratic in the polarization field P. It fulfils the integro-differential equation

1

ε0ω
2
0χr

(
∂2

∂t2
+ ω̃2

0 − v2∇2

)
�(t − t ′, x − x′)

− 1

�

∫
dt ′′G(t − t ′′)�(t ′′ − t ′, x − x′) = δ(t − t ′)δ(3)(x − x′), (2.14)

where G(t) is given by (2.11). The Fourier transform of the integral kernel �̃(ω, k) fulfils the
algebraic equation[

ω̃2
0 − ω2 + v2k2 − ε0ω

2
0χr

�
G̃(ω)

]
�̃(ω, k) = ε0ω

2
0χr. (2.15)
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The Fourier transform of the function G(t) is given by

G̃(ω) =
∫ ∞

0
dω′ ω′2f (ω′)2

ω′2 − ω2 − iε
, (2.16)

and after using (2.9) and (2.10) can be written as

G̃(ω) = �

ε0ω
2
0χr

[
ω̃2

0 − ω2
0 + ω2λF (ω)

]
, (2.17)

where [5]

λF (ω) = 1

�2

∫ ∞

0
dω′ w(ω′)2

ω′2 − ω2 − iε
. (2.18)

Substitution of (2.17) into (2.15) gives for �̃

�̃(ω, k) = ε0ω
2
0χr

ω2
0 + v2k2 − ω2 − ω2λF (ω)

. (2.19)

Due to the presence of the complex-valued function λF in the denominator poles of the integral
kernel, �̃ have been removed from the real axis to the complex ω-plane. It can be checked
that the pole with Re ω > 0 is in the lower half-plane and that with Re ω < 0 in the upper
half-plane. In the absorptionless limit, which corresponds to λF → 0 + iε, one gets the correct
−iε prescription for avoiding the singularities,

�̃ → ε0ω
2
0χr

ω2
0 + v2k2 − ω2 − iε

. (2.20)

It follows from (2.5) and (2.13) that the effective action of the electromagnetic field in a
linear dispersive medium is given by

Seff[E, B] = Sem[E, B] +
1

2

∫
x

∫
x ′

E(x)�(x − x ′)E(x ′). (2.21)

Since �̃∗(−ω,−k) �= �̃(ω, k), the kernel �(t, x) is not real and as a consequence the effective
action is complex. It can be shown that the imaginary part of the effective action is positive, so
that the ground state persistence probability is smaller than unity. Interaction with the external
electromagnetic field leads to the excitation of the medium which therefore may not remain
in its ground state. The energy of this excitation is further absorbed by the reservoir degrees
of freedom.

Effective action of the electromagnetic field can be used to find the constitutive equation
and dielectric function of a dispersive dielectric. The constitutive equation, i.e. the relation
between the displacement field D and the electric field E, could be determined with the use of
the general formula, which in the case of a local theory reads [33]

D(t, x) = ∂L(E, B)

∂E(t, x)
, (2.22)

where L(E, B) is a local Lagrangian density. In the present case the effective action is
complex and non-local in space and time, so that the general formula (2.22) cannot be directly
applied. This difficulty can be overcome by expressing the effective action in terms of Fourier
transforms of the electric field and of the integral kernel, and then calculating the displacement
field by differentiating the effective Lagrangian with respect to the complex conjugate of the
Fourier transform of the electric field [5]. The effective action (2.21) can be expressed by
Fourier transforms of the integral kernel and the fields as

Seff[E, B] =
∫ ∞

0

dω

2π

∫ ′ d3k

(2π)3

[
ε0|E(ω, k)|2 − 1

µ0
|B(ω, k)|2

]
+

∫ ∞

0

dω

2π

∫ ′ d3k

(2π)3
�̃(ω, k)|E(ω, k)|2. (2.23)
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Since E(ω, k) and B(ω, k) are complex with E∗(ω, k) = E(−ω,−k) and B∗(ω, k) =
B(−ω,−k), which doubles the number of variables, the integrations in the reciprocal space
must be performed over the positive frequency semi-axis and the half space of the vector k
[15] (the half-space k-integration is denoted by prime). The effective Lagrangian density in
the reciprocal space reads

Leff(E, B) = ε0|E(ω, k)|2 − 1

µ0
|B(ω, k)|2 + �̃(ω, k)|E(ω, k)|2. (2.24)

The displacement field D(ω, k) in the reciprocal space will be calculated as [5]

D(ω, k) = ∂Leff

∂E∗(ω, k)
= ε0E(ω, k) + �̃(ω, k)E(ω, k), (2.25)

valid for ω > 0. The dielectric function for ω > 0 can be retrieved from this equation as

ε+(ω, k) = 1 +
1

ε0
�̃(ω, k) = 1 +

ω2
0χr

ω2
0 + v2k2 − ω2 − ω2λF (ω)

. (2.26)

Analytic continuation of the dielectric function to negative values of frequencies is given by
ε−(ω, k) = ε∗

+(−ω,−k), which is consistent with the property ε(−ω) = ε∗(ω). One finally
obtains

ε(ω, k) = 1 +
ω2

0χr

ω2
0 + v2k2 − ω2 − ω2λR(ω)

, (2.27)

where the function λR is given by

λR(ω) = 1

�2

∫ ∞

0
dω′ w(ω′)2

ω′2 − ω2 − iεsign(ω)
. (2.28)

Formula (2.27) is valid also in the whole k space. As a function of complex frequency,
ε(ω, k) is analytic in the upper half-plane [5, 15], and is therefore consistent with the causality
requirement and fulfils the Kramers–Kronig relations. The displacement field in the entire
reciprocal space is given by

D(ω, k) = ε0E(ω, k) +
ε0ω

2
0χr

ω2
0 + v2k2 − ω2 − ω2λR(ω)

E(ω, k), (2.29)

so that

D(t, x) = ε0E(t, x) +
∫ ∞

−∞
dt ′

∫
d3x ′ �R(t − t ′, x − x′)E(t ′, x′), (2.30)

where the response function �R in the configuration space has the form

�R(t, x) = ε0ω
2
0χr

∫ ∞

0

dω

2π

∫
d3k

(2π)3
e−iωt+ik·x 1

ω2
0 + v2k2 − ω2 − ω2λR(ω)

. (2.31)

Since the denominator of the integrand is analytic in the upper half-plane of complex ω and
has poles only in the lower half-plane, the response function �R is zero for t < 0. The time
integration in (2.30) extends therefore from −∞ to the actual time t, in agreement with the
causality requirements.

3. Full quantization of the model

In this section full path-integral quantization of the model described by the microscopic
Lagrangian density (2.4) will be presented. For this purpose the Lagrangian density (2.4) will
be amended by source terms and then the integration over all the fields, including also the
electromagnetic field, will be performed. The resulting object is the generating functional of
the propagators from which the propagators can be calculated by functional differentiation
with respect to the source terms [26]. The issue of gauge invariance will also be discussed.
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3.1. Generating functional

To perform the quantization in a complete and consistent way one should start from the
Hamiltonian form of the path-integral expression for the transition amplitude [32, 34]. To
construct the Hamiltonian one has to express the Lagrangian by electromagnetic potential.
Together with the source terms this gives

L = Lem + LP + LY + Lint + A · J + P · g, (3.1)

where

Lem = ε0

2
(−Ȧ − ∇ϕ)2 − 1

2µ0
(∇ × A)2, (3.2a)

LP = 1

2ε0ω
2
0χr

(
Ṗ2 − v2 ∂Pi

∂xj

∂Pi

∂xj

− ω2
0P2

)
, (3.2b)

LY =
∫ ∞

0
dω′

(�

2
Ẏ2

ω′ − �

2
ω′2Y2

ω′

)
, (3.2c)

Lint = P · (−Ȧ − ∇ϕ) −
∫ ∞

0
dω′ f (ω′)P · Ẏω′ , (3.2d)

where J and g are, respectively, sources of the electromagnetic and polarization field. To find
the Hamiltonian it is necessary to determine canonical momenta. Since the time derivative
of the scalar potential ϕ does not appear in the Lagrangian density, there is no momentum
conjugate to ϕ. The canonical momenta can be determined provided the gauge has been fixed.
The Weyl gauge ϕ = 0 will be chosen for the purpose of calculating the conjugate momenta,

A
i = ∂L

∂Ȧi

= ε0Ȧi − Pi = −Di, (3.3a)

P
i = ∂L

∂Ṗ i

= (
ε0ω

2
0χr

)−1
Ṗ i , (3.3b)

Y
ωi = ∂L

∂Ẏωi

= �Ẏωi − f (ω)Pi, (3.3c)

where A
i . . . denote momenta conjugate to the corresponding fields and Di is the electric

displacement field. The Hamiltonian density,

H = A
i Ȧi + P

i Ṗ i +
∫ ∞

0
dω Y

ωiẎωi − L, (3.4)

is gauge invariant.The velocities in (3.4) have to be expressed by fields and conjugate momenta.
Electrodynamics is a constrained theory, i.e. apart from the dynamical equations

containing time derivatives of the fields, there is also a constraint equation in the form of
Gauss law,

∇ · D − η = 0, (3.5)

where η is the external charge density coupling to the scalar potential. Moreover, to perform
the path-integral quantization correctly it is necessary to fix the gauge by a condition of the
type γg(A) = 0 [34]. Taking into account the constraint (3.5) and the gauge condition one
obtains the expression for the generating functional in the form [34]

C[J, g, η] = N
∫

[dA][dP][dY][dD][dP ][dY ]δ(∇ · D − η)δ(γg(A))

× exp

[
i

h̄

∫
x

(
−DiȦi + P

i Ṗ i +
∫ ∞

0
dω Y

ωi · Ẏωi − H
)]

, (3.6)



13562 A Bechler

where N is the normalization factor. In general, the determinant of the Poisson bracket of the
constraint and gauge condition, det{∇ · D − η, γg(A)}, should be included as a factor [34],
but in the Abelian gauge theory it is independent of the fields and can be absorbed in the
normalization N . The constraint functional delta is further written in the form of ‘functional
Fourier representation’ [34],

δ(∇ · D − η) ∝
∫

[dϕ] exp

[
i

h̄

∫
x

ϕ(∇ · D − η)

]
, (3.7)

with ϕ identified as the scalar potential. After substituting (3.7) into (3.6) one can perform
functional integrations over momenta. Since the Hamiltonian is quadratic in momenta one
gets, after performing the Gaussian integrals,

C[J, g, η] = N
∫

[dA][dϕ][dP][dY]δ(γg(A)) exp

[
i

h̄

∫
x

(L − ηϕ)

]
, (3.8)

where L is the Lagrangian density (3.1) and the ‘Fourier representation’ of the constraint delta
resulted in a source term for the scalar potential. With the choice of the Coulomb gauge,
∇ · A = 0, the gauge fixing delta is represented by

δ(∇ · A) ∝ exp

[
− i

h̄

1

2µ0α

∫
x

(∇ · A)2

]
, (3.9)

with α → 0 at the end of calculations. Inserting (3.9) into (3.8) one obtains the functional
integral for C with the Lagrangian density amended by the gauge fixing term

C[J, g, η] = N
∫

[dA][dϕ][dP][dY] exp

[
i

h̄

∫
x

(
L − i

h̄

1

2µ0α

∫
x

(∇ · A)2 − ηϕ

)]
. (3.10)

The normalization factor has to be determined from the condition C[0, 0] = 1. For a
quadratic action of a linear model, the normalization factor is equal to unity. The time-ordered
propagator of the electromagnetic field is given by

Dij (t − t ′, r − r′) = i

h̄
〈T [Ai(t, r)Aj (t, r′)]〉 = −ih̄

δ2C[J, G]

δJi(t, r)δJj (t ′, r′)

∣∣∣∣∣
J=0,g=0,η=0

, (3.11)

where 〈· · ·〉 denotes the ground state expectation value and T denotes the time-ordered product
of the operators. In the present case

T [Ai(t, r)Aj (t, r′)] = θ(t − t ′)Ai(t, r)Aj (t, r′) + θ(t ′ − t)Aj (t
′, r′)Ai(t, r). (3.12)

The polarization field propagator is calculated in a similar way:

ij (t − t ′, r − r′) = i

h̄
〈T [Pi(t, r)Pj (t, r′)]〉 = −ih̄

δ2C[J, G]

δgi(t, r)δgj (t ′, r′)

∣∣∣∣∣
J=0,g=0,η=0

, (3.13)

and also the propagator of scalar potential

S(t − t ′, r − r′) = i

h̄
〈T [ϕ(t, r)ϕ(t, r′)]〉 = −ih̄

δ2C[J, G]

δη(t, r)δη(t ′, r′)

∣∣∣∣∣
J=0,g=0,η=0

. (3.14)

Functional integration over the reservoir field Y will be performed first. Since Y does
not couple to the electromagnetic field, the integration can be done in the same way as in
section 2. The result is

C[J, g, η] = N
∫

[dA][dϕ][dP] exp

{
i

h̄

∫
x

[Lem + LP + P · (−Ȧ − ∇ϕ)] +
i

h̄
SP

}
× exp

[
− i

h̄

1

2µ0α

∫
x

(∇ · A)2 +
i

h̄

∫
x

(J · A + P · g − ηϕ)

]
, (3.15)
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where

SP = 1

2

∫
dt

∫
dt ′

∫
d3x

∫ ∞

0
dω′ 1

�
f (ω′)2Ṗ(t, r)DF (t − t ′, ω′)Ṗ(t ′, r). (3.16)

There are still three functional integrals to perform, all of them Gaussian. The calculation is
straightforward though quite lengthy with increasing degree of complexity when consecutive
integrations are done. To avoid technical details as much as possible, the form of generating
functional after the integrations over vector and scalar potentials is given below,

C[J, g, η] =
∫

[dP] exp

[
i

h̄

(
SP +

∫
x

LP

)
+

i

h̄

∫
x

P · g
]

× exp

{
i

2h̄

∫
x

∫
x ′

[Ṗ i(x) + Ji(x)]D(0)
ij (x − x ′)[Ṗ i(x

′) + Ji(x
′)]

}
× exp

[
i

2h̄

∫
x

∫
x ′

σ(x)S(0)(x − x ′)σ (x ′)
]

, (3.17)

where the source function σ(x) has the form

σ(x) = η(x) − ∂iPi +
∫

x ′
ε0∂t∂iD

(0)
ij (x − x ′)[Ṗ j (x

′) + Jj (x
′)], (3.18)

and the free propagators of vector and scalar potential, D
(0)
ij and S(0), respectively, have the

Fourier transforms

D̃
(0)
ij (ω, k) = − 1

ε0

1

ω2 − c2k2 + iε

(
δij − kikj

k2

)
− 1

ε0ω2 − k2/(αµ0)

kikj

k2
, (3.19a)

S̃(0)(ω, k) = − 1

ε0k2

(
1 − α

ω2

c2k2

)
. (3.19b)

Both propagators of the electromagnetic field are gauge dependent, as can be seen from the
presence of the parameter α. The transverse part of the vector potential propagator is gauge
invariant, so it does not depend on α, and in the Coulomb gauge limit α → 0 the longitudinal
part vanishes. The propagator of scalar potential corresponds in this limit to the instantaneous
Coulomb interaction.

To determine the polarization field propagator and perform the remaining integration in
(3.17) one has to collect terms quadratic in P. The resulting equation for the Fourier transform
of the polarization field propagator ̃ij reads[(

ε0ω
2
0χr

)−1(
ω2

0 + v2k2 − ω2 − ω2λF − ω2D̃
(0)
T

)
δij +

(
ω2D̃

(0)
T + ε−1

0

)
(kikj /k2)

]
̃jl = δjl,

(3.20)

where D̃
(0)
T denotes the transverse part of the vector field propagator

D̃
(0)
T = − 1

ε0

1

ω2 − c2k2 + iε
(3.21)

and λF is given by (2.18). The terms dependent on the parameter α cancelled in (3.20)
as expected, since the polarization field is gauge independent, and so is its propagator.
Equation (3.20) can be easily solved,

̃ij (ω, k) =
(

δij − kikj

k2

)
ω2 − c2k2

ω2̃ε(ω, k) − c2k2
�̃(ω, k) +

kikj

k2

�̃(ω, k)

ε̃(ω, k)
, (3.22)

where �̃ is the Fourier transform (2.19) of the integral kernel �, and

ε̃(ω, k) = 1 + ε−1
0 �̃(ω, k). (3.23)
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The final form of the generating functional reads

C[J, g, η] = exp

[
i

2h̄

∫
x1

∫
x2

Ji(x1)D
(0)
ij (x1 − x2)Jj (x2)

]
× exp

[
i

2h̄

∫
x1

∫
x2

τ(x1)S
(0)(x1 − x2)τ (x2)

]
× exp

{
i

2h̄

∫
x1

∫
x2

[gi(x1) − Ji (x1)]ij (x1 − x2)[gj (x2) − Jj (x2)]

}
, (3.24)

where the sources τ and Ji are given by

τ(x) = η(x) + ε0

∫
x ′

∂t∂iD
(0)
ij Jj (x

′), (3.25a)

Ji (x) =
∫

x ′
∂tD

(0)
T ij (x − x ′)Jj (x

′) +
∫

x ′

∫
x ′′

�i(x − x ′)S(0)(x ′ − x ′′)η(x ′′), (3.25b)

with

�i(x) = −∂iδ(x) + ε0∂
2
t ∂jD

(0)
ij (x). (3.26)

3.2. Interacting propagators

The generating functional calculated in the previous section will now be used to calculate
the propagators of the fields including the effects of interaction between matter and the
electromagnetic field. Using (3.13) and (3.24), one easily notes that the full propagator of
the polarization field has the form (3.22). For the full propagator of the vector potential, one
obtains from (3.11) and (3.24)

D̃ij (ω, k) = − 1

ε0

1

ω2̃ε(ω, k) − c2k2

(
δij − kikj

k2

)
+

kikj

k2

αµ0

k2
, (3.27)

whereas for the scalar potential propagator one gets

S(ω, k) = − 1

ε0k2̃ε(ω, k)
+ α

ω2

ε0c2k4
. (3.28)

As expected, the transverse part of the vector potential propagator is independent of the
parameter α, and in the α → 0 limit the propagator is purely transverse. The scalar potential
propagator in the α → 0 limit corresponds for ω = 0 (static limit) to the screened Coulomb
interaction, the screening being due to the k dependence of ε̃. For real positive frequencies,
ε̃ is equal to the dielectric function, and ε̃ = ε∗ for ω < 0. Zeros of the denominator of
the vector potential propagator determine the dispersion relation between frequency and wave
vector for the polariton modes [16],

ω2ε̃(ω, k) − c2k2 = 0. (3.29)

Since the dielectric function ε(ω, k) is complex for an absorbing medium, this relation cannot
be fulfilled for real frequencies and wave vectors. For real wave vector one gets solutions
with complex frequencies, which for Re ω > 0 have the negative imaginary part, and for the
negative real part the imaginary part is positive, corresponding to the Feynman-type structure
of singularities of the propagator.
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4. Equal time commutators

Basic objects in the path-integral quantization of fields are the propagators. For various
applications the key objects are field operators, which, among others, should fulfil correct
canonical commutation rules. In the case of the vector potential, for which the conjugate
momentum is −Di , one would expect in the Coulomb gauge

[Ai(t, r),Dj (t, r′)] = −ih̄(δij − �−1∂i∂j )δ
(3)(r − r′), (4.1)

where � denotes, here, the Laplace operator. It is not however obvious that for interacting
quantum fields such a ‘naive’ equal time commutation relation (ECTR) is fulfilled [35]. The
point is that additional terms may appear on the right-hand side, for instance involving spatial
derivatives of delta function (Schwinger terms). One has therefore to check the ECTR using
more sophisticated tools, usually referred to as BJL (Bjorken, Johnson, Low) limit [27, 28].
The ECTR will be checked here with the direct use of the propagators derived in the previous
section using a scheme described in Bjorken’s paper [28]

It is sufficient to consider the ground state expectation values of the ECTR. This will be
done by constructing the quantity

Cij (ω, k) = i

h̄

∫
dt d3x ei(ωt−k·r)〈T [Ai(t, r)Dj (0)]〉. (4.2)

Using further definition of the time-ordered product and the formulae

eiωtθ(±t) = 1

2π i

∫ ∞

−∞

e±iω′t

ω′ ∓ ω − iε
dω′, (4.3)

one can write (4.2) as

Cij (ω, k) = 1

2πh̄

∫ ∞

−∞
dω′

[
cij (ω

′, k)

ω′ − ω − iε
+

c̃j i (ω
′,−k)

ω′ + ω − iε

]
, (4.4)

where

cij (ω, k) =
∫

dt d3x ei(ωt−k·r)〈Ai(t, r)Dj (0)〉, (4.5a)

c̃j i (ω, k) =
∫

dt d3x e−i(ωt−k·r)〈Dj(0)Ai(t, r)〉. (4.5b)

On the other hand, as follows from (4.5a) and (4.5b)∫
d3x e−ik·r〈[Ai(0, r),Dj (0)]〉 =

∫ ∞

−∞

dω′

2π
[cij (ω

′, k) − c̃j i (ω
′,−k)]. (4.6)

It follows then from (4.4) and (4.6) that for ω → ∞

Cij (ω, k) → − 1

h̄ω

∫
d3x e−ik·r〈[Ai(0, r),Dj (0)]〉, (4.7)

which shows that the ground state expectation value of the ECTR can be derived from the time-
ordered products of the operators. Ground state expectation values of time-ordered products
are the propagators of the fields; it follows, therefore, that the ECTR can be derived with the
use of propagators. However, it is not a priori guaranteed that using the field operators and the
propagators calculated in an independent way (e.g. by path-integral method) one would obtain
the same result. The difference (which of course may be zero) contributes to the Schwinger
terms in the ECTR.
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Let C̃ij denote the quantity corresponding to Cij but calculated with the direct use of
the propagators found in the previous section. The ECTR will be derived by calculating the
ω → ∞ limit of C̃ij . The electric displacement field is given as

Di(t, r) = −ε0[Ȧi(t, r) + ∂iϕ(t, r)] + Pi(t, r). (4.8)

Thus

〈T [Ai(t, r)Dj (0)]〉 = ε0∂t 〈T [Ai(t, r)Aj (0)]〉 − ε0δ(t)〈[Ai(0, r), Aj (0)]〉
+ ε0∂j 〈T [Ai(t, r)ϕ(0)]〉 + 〈T [Ai(t, r)Pj (0)]〉. (4.9)

The ‘counterpart’ C̃ij of Cij can therefore be expressed as

C̃ij (ω, k) = ε0

∫
dt d3x ei(ωt−k·r)∂tDij (t, r) − ε0

∫
d3x e−ik·r〈[Ai(0, r), Aj (0)]〉

+ ε0

∫
dt d3x ei(ωt−k·r)∂j�i(t, r) + ε0

∫
dt d3x ei(ωt−k·r)Kij (t, r), (4.10)

where Dij is the vector potential propagator with the Fourier transform (3.27), and the two
remaining propagators are

�i(t, r) = −ih̄
δ2C

δJi(t, r)δη(0)
, (4.11a)

Kij (t, r) = −ih̄
δ2C

δJi(t, r)δgj (0)
. (4.11b)

The second term in (4.10) can be calculated by examining the ω → ∞ limit of the vector
potential propagator, according to the general rule expressed in (4.7):∫

d3x e−ik·r〈[Ai(0, r), Aj (0)]〉 = −h̄ω

∫
dt d3x ei(ωt−k·r)Dij (t, r)

∣∣∣∣
ω→∞

= −h̄ωD̃ij (ω, k)|ω→∞. (4.12)

The large frequency behaviour can be obtained from (3.27) taking into account that in this
limit ε̃ → 1. Therefore, the transverse part goes to zero like ω−2, and the longitudinal part
vanishes in the Coulomb gauge limit α = 0. This proves that the equal time commutator of
vector potentials vanishes, as one would expect.

Explicit calculation using (3.24) shows that �i is proportional to the longitudinal part of
the vector potential propagator and vanishes for α = 0. Further∫

dt d3x ei(ωt−k·r)Kij (t, r) = K̃ij (ω, k) = −iω

(
δij − kikj

k2

)
(ω2 − c2k2)�̃

ε0(ω2̃ε − c2k2)2
(4.13)

vanishes like ω−3, and does not therefore contribute to the ECTR.
The term which still has to be examined is the first contribution to the right-hand side of

(4.10). It is given by −iωε0D̃ij (ω, k), and falls off to zero as ω−1. Explicitly

C̃ij (ω, k) → i

ω

(
δij − kikj

k2

)
. (4.14)

This type of behaviour allows us to compare (4.14) with (4.7), which leads to the relation

−1

h̄

∫
d3x e−ik·r〈[Ai(0, r),Dj (0)]〉 = i

(
δij − kikj

k2

)
, (4.15)

which is consistent with the ‘naive’ ECTR (4.1).
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5. Field operators

5.1. Construction of field operators

Path-integral quantization of a field theory model consists basically in construction of
the propagators. The objects which are equally important for applications of quantum
electrodynamics of dielectric media are the field operators which in this quantization scheme
are not the primary quantities and have to be retrieved from the propagators. Due to the
lack of the dispersion relation in a dispersive medium, plane-wave decompositions of field
operators must contain independent integrations over frequency and wave vector. For the
purpose of construction of field operators two sets of annihilation and creation operators are
introduced, C

(λ)
T (ω, k) and CL(ω, k), and their Hermitian conjugates. The subscript T/L

corresponds to transverse/longitudinal effective excitations in the medium (polariton modes).
The commutation relations read[

C
(λ)
T (ω, k), C

(λ′)†
T (ω′, k′)

] = (2π)4δλλ′δ(ω − ω′)δ(3)(k − k′), (5.1a)[
CL(ω, k), C

†
L(ω′, k′)

] = (2π)4δ(ω − ω′)δ(3)(k − k′), (5.1b)

with the remaining commutators vanishing. The transverse operator of the vector potential in
the Coulomb gauge has the plane-wave decomposition

A(t, r) =
∑

λ

∫ ∞

0

dω

2π

∫
d3k

(2π)3

[
φ(ω, k)e(λ)(k)C

(λ)
T (ω, k)e−iωt+ik·r + h.c.

]
, (5.2)

where h.c. denotes the Hermitian conjugate and e(λ)(k) is the polarization vector orthogonal
to k and fulfilling the summation formula∑

λ

e
(λ)∗
i (k)e

(λ)
j (k) =

(
δij − kikj

k2

)
. (5.3)

The complex-valued function φ will be determined in a similar way as in [36] or [5] by
calculating first the propagator as the expectation value of the time-ordered product of
field operators and then comparing the resulting expression with the propagator obtained in
section 3.2. This procedure leads to the equation

1

2πh̄

∫ ∞

0
dω′|φ(ω′, k)|2

(
1

ω − ω′ + iε
− 1

ω + ω′ − iε

)
= 1

ε0

1

ω2̃ε(ω, k) − c2k2
. (5.4)

It is shown in appendix A that equation (5.4) has solution in the form

φ(ω, k) =
(

2h̄

ε0

)1/2
ω{Im[ε(ω, k)]}1/2

ω2ε(ω, k) − c2k2
. (5.5)

Operator of the polarization field can be determined in a similar way. Assuming the plane-wave
decomposition

P(t, r) =
∑

λ

∫ ∞

0

dω

2π

∫
d3k

(2π)3

[
p(ω, k)e(λ)(k)C

(λ)
T (ω, k) e−iωt+ik·r + h.c

]
+

∫ ∞

0

dω

2π

∫
d3k

(2π)3

[
q(ω, k)

k
|k|CL(ω, k) e−iωt+ik·r + h.c

]
, (5.6)

calculating the propagator as the expectation value of the time-ordered product and comparing
with expression (3.22), one obtains equations for the p and q functions
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1

2πh̄

∫ ∞

0
dω′|p(ω′, k)|2

(
1

ω − ω′ + iε
− 1

ω + ω′ − iε

)
= −�̃(ω, k)

ω2 − c2k2

ω2̃ε(ω, k) − c2k2
,

(5.7a)

1

2πh̄

∫ ∞

0
dω′|q(ω′, k)|2

(
1

ω − ω′ + iε
− 1

ω + ω′ − iε

)
= − �̃(ω, k)

ε̃(ω, k)
, (5.7b)

which can be solved in the same way as the previous equation for φ. It is shown in appendix
A that

p(ω, k) = −iε0

(
2h̄

ε0

)1/2
(ω2 − c2k2){Im[ε(ω, k)]}1/2

ω2ε(ω, k) − c2k2
= −iε0

ω2 − c2k2

ω
φ(ω, k), (5.8a)

q(ω, k) = −iε0

(
2h̄

ε0

)1/2 {Im[ε(ω, k)]}1/2

ε(ω, k)
. (5.8b)

Plane-wave decomposition of the scalar potential contains only longitudinal modes, and
proceeding in the same way as for A and P one obtains

ϕ(t, r) =
∫ ∞

0

dω

2π

∫
d3k

(2π)3

1

|k|
[
− i

ε0
q(ω, k)CL(ω, k) e−iωt+ik·r + h.c

]
. (5.9)

Next step is the construction of gauge-independent operators of the electric field,
E = −Ȧ − ∇ϕ, and of the displacement field, D = ε0E + P. Potentials and the polarization
field can be decomposed into positive and negative frequency parts. Denoting the positive
frequency contribution by the superscript ‘(+)’ one has in the reciprocal space

A(+)(ω, k) = φ(ω, k)
∑

λ

e(λ)(k)C
(λ)
T (ω, k), (5.10a)

P(+)(ω, k) = p(ω, k)
∑

λ

e(λ)(k)C
(λ)
T (ω, k) +

k
|k|q(ω, k)CL(ω, k), (5.10b)

ϕ(+)(ω, k) = − i

ε0
q(ω, k)CL(ω, k). (5.10c)

For the operator of the electric field one gets

E(+)(ω, k) = iωφ(ω, k)
∑

λ

e(λ)(k)C
(λ)
T (ω, k) − 1

ε0

k
|k|q(ω, k)CL(ω, k). (5.11)

The electric field has in general transverse and longitudinal parts, with the latter vanishing
for the non-absorptive medium, for which Im[ε(ω, k)] = 0. Note that the longitudinal part
does not vanish for a homogeneous absorbing medium, also when the wave vector dispersion
(spatial non-locality of constitutive equations) is disregarded. Calculating the displacement
field one finds

D(+)(ω, k) = iε0φ(ω, k)
c2k2

ω

∑
λ

e(λ)(k)C
(λ)
T (ω, k), (5.12)

which is purely transverse. For completeness, the positive frequency part of the magnetic
induction field is also given:

B(+)(ω, k) = iφ(ω, k)
∑

λ

k × e(λ)(k)C
(λ)
T (ω, k). (5.13)
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5.2. Quantum constitutive equation

As long as the electromagnetic field in an absorptive dielectric medium is not quantized the
constitutive equation has the homogeneous form (2.30). In the fully quantized theory the
electric displacement field D = ε0E + P was obtained using the electric and polarization fields
calculated as independent objects, without assuming any relation between them. It is well
known that a direct consequence of the presence of absorption is that the constitutive equation
for the quantized fields does no longer have the form (2.30), but contains an additional noise
term due to absorption [15, 37], so that for positive frequency part of the displacement field
one has in the reciprocal space

D(+)(ω, k) = ε0ε(ω, k)E(+)(ω, k) + F(+)(ω, k), (5.14)

where the noise field has been denoted by F. Using (5.11) and (5.12) one finds

F(+)(ω, k) = −iε0

(
2h̄

ε0

)1/2

{Im[ε(ω, k)]}1/2

[∑
λ

e(λ)(k)C
(λ)
T (ω, k) +

k
|k|CL(ω, k)

]
,

(5.15)

which shows that the noise term vanishes in the non-absorbing medium for which the imaginary
part of the dielectric function is equal to zero.

One can infer about a necessity to introduce an additional source term, corresponding to
noise contribution on quantum level, also on the basis of purely classical considerations. The
point is that with a complex dielectric function no non-trivial solutions of the homogeneous
Maxwell equations exist if the frequency and wave vector in the reciprocal space are required
to be real quantities. From homogeneous Maxwell equations one obtains the wave equation
in the form

∇(∇ · E) − ∇2E = −µ0
∂2D
∂t2

. (5.16)

Assuming that the classical constitutive equation D(ω, k) = ε0ε(ω, k)E(ω, k) in the reciprocal
space one gets [

k2δij − ω2

c2
ε(ω, k)δij − kikj

]
Ej(ω, k) = 0. (5.17)

For the complex dielectric function the dispersion equation

det

[
k2δij − ω2

c2
ε(ω, k)δij − kikj

]
= 0 (5.18)

cannot be fulfilled for real frequencies and wave vectors and, as a consequence, no non-
vanishing solutions for the electric field could be found. With the lack of dispersion relation
between real frequency and wave vector non-trivial solutions of the field equations can exist
only in the presence of an additional current on the right-hand side of (5.17). Maxwell
equations for the effective quantum fields B and E have the form

ε0∇ · (E + χ̂E) = −∇ · F, (5.19a)

∇ · B = 0, (5.19b)

∇ × E +
∂B
∂t

= 0, (5.19c)

∇ × B − µ0
∂

∂t
(E + χ̂E) = µ0

∂F
∂t

, (5.19d)
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where F is the noise field and the shorthand notation has been used

χ̂E(t, r) =
∫ t

−∞
dt ′

∫
d3r′ χ(t − t ′, r − r′)E(t ′, r′). (5.20)

χ(t, r) is the response function χ(t, r) = ε−1
0 �R(t, r) (cf (2.31)). The noise charge density

ρn = −∇ · F and the noise current density jn = ∂tF [14] can be considered as sources of the
E and B fields, though, strictly speaking, there are no ‘true’ external sources of the fields.

6. Final remarks

The path-integration method has been applied to the quantization of the electromagnetic field
in dispersive dielectric media including also the wave vector dispersion. Integration over the
polarization and absorption noise fields, modelled by a set of harmonic oscillators, allowed
us to eliminate the matter degrees of freedom giving effective action describing dynamics
of the electromagnetic field in a dispersive medium. The dielectric function, which can be
determined from the effective action of the classical electromagnetic field, depends both on
frequency and wave vector, and the constituent equations are therefore non-local in time and
space variables.

Full quantization of the model by path integration gives expressions for the quantum
propagators of the effective fields, i.e. the electromagnetic and polarization field. Poles
of the propagators determine the dispersion relation of the type ω = ω(k), which for an
absorptive medium cannot be fulfilled for both frequency and wave vector real. Therefore,
contrary to vacuum QED, frequency and wave vector have to be treated as independent
variables, with independent integrations over both of them in plane-wave expansions of field
operators. The field operators can be retrieved from the propagators assuming existence
of creation and annihilation operators of effective quanta of the electromagnetic field in
the medium—the polaritons. The procedure of construction of field operators from the
propagators is consistent in that the effective field operators, which are ‘secondary’ objects
in this quantization procedure, fulfil canonical commutation rules, which serve as a basic
assumption in the canonical quantization approach.

Appendix A

The solution of equation (5.4) will be found by calculating the imaginary parts of both sides.
Using

1

x ± iε
= P

1

x
∓ iπδ(x) (A.1)

one obtains from (5.4), for positive frequencies ω,

− 1

2h̄
|φ(ω, k)|2 = 1

ε0
Im

[
1

ω2ε(ω, k) − c2k2

]
, (A.2)

where ε̃ was replaced by the dielectric function ε since ε̃ = ε for positive frequencies.
Equation (A.2) allows us to determine φ up to a phase factor. Using

Im

[
1

ω2ε(ω, k) − c2k2

]
= − ω2 Im[ε(ω, k)]

|ω2ε(ω, k) − c2k2|2 , (A.3)

and choosing the phase factor as equal to unity gives

φ(ω, k) =
(

2h̄

ε0

)1/2
ω{Im[ε(ω, k)]}1/2

ω2ε(ω, k) − c2k2
. (A.4)
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Although expression for the vector potential operator involves the function φ only for
positive frequencies, it is nevertheless important to know its explicit form over the entire
frequency axis. This can be achieved by assuming that |φ|2 considered as a function of the
frequency over the entire real axis is odd [5, 36]. For negative frequencies one gets from (5.4)

− 1

2h̄
|φ(−ω, k)|2 = 1

ε0
Im

[
1

ω2̃ε(ω, k) − c2k2

]
. (A.5)

Since for negative frequencies ε̃ = ε∗, equation (A.5) leads to (A.4) also for negative
semi-axis. The odd character of |φ|2 is consistent with the property Im[ε(ω, k] =
−Im[ε(−ω, k].

Equations (5.7a) and (5.7b) for the functions p and q, and also equation for the function
f determining scalar potential, can be solved in a similar way with the only difference that the
phase factors cannot be put equal to unity, but have to be determined from Maxwell equations.
What really counts is the relative phase between φ and p, and q and f . Also for these functions
the assumption that extension to negative frequencies gives odd functions is made. For positive
frequencies equation (5.7a) gives

1

2h̄
|p(ω, k)|2 = Im

[
�̃(ω, k)

ω2 − c2k2

ω2ε(ω, k) − c2k2

]
. (A.6)

It follows from (3.23) that �̃(ω, k) = ε0[ε(ω, k) − 1] for positive frequencies, which upon
substitution into (A.6) gives after a simple calculation

|p(ω, k)|2 = 2h̄ε0(ω
2 − c2k2)2 Im[ε(ω, k)]

|ω2ε(ω, k) − c2k2|2 , (A.7)

so that

p(ω, k) = (2h̄ε0)
1/2(ω2 − c2k2)

{Im[ε(ω, k)]}1/2

ω2ε(ω, k) − c2k2
eiα = ε0

ω2 − c2k2

ω
eiαφ(ω, k). (A.8)

Similar calculation gives for q

q(ω, k) = (2h̄ε0)
1/2 {Im[ε(ω, k)]}1/2

ε(ω, k)
eiβ, (A.9)

and

f (ω, k) = 1

ε0|k|q(ω, k) eiγ . (A.10)

The phases will be determined from the equation

1

µ0
∇ × B = ε0

∂E
∂t

+
∂P
∂t

, (A.11)

which in terms of the potentials reads

−∇2A = − 1

c2
(Ä + ∇ϕ̇) + µ0Ṗ. (A.12)

After substituting Fourier transforms of positive frequency parts of field operators and
separating transverse and longitudinal parts on both sides one gets(

k2 − ω2

c2

)
φ = −iωµ0p, f +

i

ε0|k|q = 0. (A.13)

Use of (A.8) and (A.10) leads to the conditions

i eiα = 1, eiγ = −i. (A.14)
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so that α = γ = −π/2. The phase β of the q-function will be chosen in the same way as that
for p. Finally,

p(ω, k) = −iε0
ω2 − c2k2

ω
φ(ω, k), (A.15)

and

q(ω, k) = −iε0

(
2h̄

ε0

)1/2 {Im[ε(ω, k)]}1/2

ε(ω, k)
, f (ω, k) = − i

ε0|k|q(ω, k). (A.16)

These relations are valid over the entire frequency axis.

Appendix B

In this appendix the commutation relation (4.1) will be verified directly with the use of field
operators. Using expressions for the positive frequency parts (5.10a) and (5.12), calculating
the operators in configuration space with the use of A

(−)
i = A

(+)†
i (also for Dj ) and using (5.3),

one arrives at the following expression for the commutator

[Ai(t, r),Dj (t, r′)] = −2iε0

∫
d3k

(2π)3
eik·(r−r′)

∫ ∞

0

dω

2π

|φ(ω, k)|2
ω

c2k2

(
δij − kikj

k2

)
.

(B.1)

Putting ω = 0 in (5.4) and changing the integration variable from ω′ to ω gives the following
sum rule for the φ function∫ ∞

0

dω

2π

|φ(ω, k)|2
ω

= h̄

2ε0c2k2
, (B.2)

which after substituting into (B.1) leads to the commutation relation (4.1).
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